
Week 9 - Monday

 What did we talk about last time?
 Weighted interval scheduling

 There are five pirates who wish to divide 100 gold coins
 These pirates are ranked:
 Captain
 Lieutenant
 Master
 Midshipman
 Seaman

 In order of rank, each pirate gets the opportunity to propose a plan for dividing up the gold
 If at least half of the pirates (including the proposer) agree on the proposition, it is carried

out
 Otherwise, the pirate is killed and the next highest ranking pirate makes a proposal
 Pirates are completely rational, who value, in this order:
 Staying alive
 Maximizing gold coins received
 Seeing other pirates die

 If you were the captain, what would you propose?
 Hint: Work backwards!

 The weighted interval scheduling problem extends interval
scheduling by attaching a weight (usually a real number) to each
request

 Now the goal is not to maximize the number of requests served
but the total weight

 Our greedy approach is worthless, since some high value requests
might be tossed out

 We could try all possible subsets of requests, but there are
exponential of those

 Dynamic programming will allow us to save parts of optimal
answers and combine them efficiently

Index

1

2

3

4

5

6

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

2

4

4

7

2

1

 Consider an optimal solution O
 It either contains the last request n or it doesn't

 If O contains n, it does not contain any requests between p(n) and
n

 Furthermore, if O contains n, it has an optimal solution for the
problem for just requests 1, 2, …, p(n)
 Since those requests don't overlap with n, they have to be the best or they

wouldn't be optimal
 If O does not contain n, then O is simply the optimal solution of

requests 1, 2,…, n - 1

 It might not be obvious, but the last slide laid out a way
to break a problem into smaller subproblems

 Let OPT(j) be the value of the optimal solution to the
subproblem of requests 1, 2,…, j

 OPT(j) = max(vj + OPT(p(j)), OPT(j – 1))
 Another way to look at this is that we will include j in

our optimal solution for requests 1, 2,…,j
iff vj + OPT(p(j)) ≥ OPT(j – 1)

 Compute-Opt(j)
 If j = 0 then
▪ Return 0

 Else
▪ Return max(vj + Compute-Opt(p(j)), Compute-Opt(j – 1))

 Well, for every request j, we
have to do two recursive
calls

 Look at the tree from the
requests a few slides back

6

5 3

4 3

3

2

1

1

2

1

1

2

1

1

Uh oh.

 The issue here is that we are needlessly recomputing optimal
values for smaller subproblems

 You might recall that we had a similar problem in COMP 2100
with the naïve implementation of a recursive Fibonacci
function

 In the worst case, the algorithm has an exponential running
time

 Just how exponential depends on the structure of the
problem

 The solution is something called memoization, which means
storing the value for an optimal solution whenever you
compute it

 Then, if you need it again, you just look it up (from the memo
you left yourself)

 To make this work, we need an array M of length n that stores
the optimal value found for each request
 Initially, it's all -1 or null or another value that indicates empty

 M-Compute-Opt(j)
 If j = 0 then
▪ Return 0

 Else if M[j] is not empty then
▪ Return M[j]

 Else
▪ M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j – 1))
▪ Return M[j]

 Constant non-recursive work is done inside of each call
 The recursion will be constant if M[j] already has a value
 There will only be n cases when M[j] doesn't have a value
 The running time is O(n)
 Note that sorting the requests in the first place takes O(n log

n)

 We have only found the value of an optimal solution, not the
actual intervals included

 As with many dynamic programming solutions, the value is
the hard part

 For each optimal value, we could keep the solution at that
point, but it would be linear in length

 Storing that solution would require O(n2) space and make the
algorithm O(n2) in order to keep it updated

 Recall that j is in our optimal solution if and only if vj +
OPT(p(j)) ≥ OPT(j – 1)

 On that basis, we can backtrack through the M array and
output request j only if the inequality holds

 Find-Solution(j, M)
 If j = 0 then
▪ Output nothing

 Else if vj + M[p(j)] ≥ M[j – 1] then
▪ Output j together with the result of Find-Solution(p(j))

 Else
▪ Output the result of Find-Solution(j – 1)

 Algorithm is O(n)

Student Lecture

 The key element that separates dynamic programming from
divide-and-conquer is that you have to keep the answers to
subproblems around

 It's not simply a one-and-done situation
 Based on which intervals overlap with which other intervals,

it's hard to predict when you'll need an earlier M[j] value
 Thus, dynamic programming can often give us polynomial

algorithms but with linear (and sometimes even larger) space
requirements

 The array M is thus the key to this (and other similar) dynamic
programming algorithms

 The same problem could have been tackled with a non-recursive
approach where you compute each M[j] in order

 Every dynamic programming problem can use either:
 Memoized recursion
 Building up solutions iteratively

 The two solutions are equivalent, but the book will prefer iterative
solutions, since they are usually faster in practice and easier to
analyze

 Iterative-Compute-Opt
 M[0] = 0
 For j = 1 up to n
▪ M[j] = max(vj + M[p(j)], M[j – 1])

 Algorithm is (even more obviously) O(n)

 Weighted interval scheduling follows a set of informal guidelines
that are essentially universal in dynamic programming solutions:
1. There are only a polynomial number of subproblems
2. The solution to the original problem can easily be computed from (or is

one of) the solutions to the subproblems
3. There is a natural ordering of subproblems from "smallest" to "largest"
4. There is an easy-to-compute recurrence that lets us compute the

solution to a subproblem from the solutions of smaller subproblems

 Given some data, it is easy to construct a line of best fit

 Consider a set P of n points {(x1, y1), (x2, y2), …, (xn, yn)}
 We want to define a line L as y = ax + b
 Such that its error is minimized

Error 𝐿𝐿,𝑃𝑃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑎𝑎𝑥𝑥𝑖𝑖 − 𝑏𝑏 2

 Using calculus, it's possible to derive an equation to determine
a and b, the slope and y-intercept of such a line:

𝑎𝑎 =
𝑛𝑛∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖

𝑛𝑛 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖
2

𝑏𝑏 =
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑎𝑎 ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖

𝑛𝑛

 A single line would have terrible error
 But how do we know that there are two lines?

 If we only care about error, n – 1 lines will always be the best
 We could just put a line between each adjacent pair of points and

have no error
 But that's obviously stupid
 Somehow, we need an algorithm that gives us the intuitively

correct number of lines
 We need a penalty for adding more lines

 We get a set P of n points {(x1, y1), (x2, y2), …, (xn, yn)}
 For simplicity, x1 < x2 < … < xn
 Let pi be (xi, yi)
 We want to partition P into segments
 Each segment is a contiguous set of x-coordinates:
 {pi, pi+1, …, pj-1, pj} for indexes i ≤ j

 Using the formula from earlier, we compute lines minimizing
the error for each segment

 The penalty of the whole partition is the sum of:
 The number of segments multiplied by some constant C > 0
 The error value of the optimal lines through each segment

 C is a constant provided to the algorithm
 The higher the C, the greater then penalty for having more segments

 How many ways are there to partition a list of n items?
 2n-1

 We can't consider all possible partitions
 Somehow, we need to divide the problem into smaller

subproblems
 The last point pn is in the last segment, whatever it is
 That segment starts at some point pi
 If we knew the last segment, we could recursively solve the

problem on points p1, p2,…,pi-1

 Let OPT(i) be the optimum solution for points p1, p2,…,pi
 Let ei,j be the minimum error of any line with respect to

pi,pi+1,…,pj
 It must be the case that, if the last segment of the optimal

partition is pi,pi+1,…pn, then the value of the optimal solution
is:
 OPT(n) = ei,n + C + OPT(i – 1)

 We can generalize that observation for any subproblem going
up to point pj:

OPT 𝑗𝑗 = min
1≤𝑖𝑖≤𝑗𝑗

𝑒𝑒𝑖𝑖,𝑗𝑗 + 𝐶𝐶 + OPT(𝑖𝑖 − 1)

 Also, the segment pi,pi+1,…,pj is used in an optimum solution
for the subproblem if and only if the minimum is obtained
with index i

 Note that we assume OPT(0) = 0

 Segmented-Least-Squares(n)
 Create array M with indexes 0 through n
 Set M[0] = 0
 For all pairs i ≤ j
▪ Compute the least squares error ei,j for segment pi,pi+1,...pj

 For j = 1 up to n
▪ For i = 1 up to j
▪ Set M[j] = min(M[j], ei,j + C + M[i-1])

 Return M[n]

 As before, we only find the total penalty value with the
previous algorithm, not the actual segments themselves

 We use the observation that the segment pi,pi+1,…,pj is used in
an optimum solution for a subproblem if and only if the
minimum was obtained using index i

 Note that this minimal i could be recorded during the initial
algorithm

 Find-Segments(j)
 If j = 0 then
▪ Output nothing

 Else
▪ Find an i that minimizes ei,j + C + M[i-1]
▪ Output the result of Find-Segments(i – 1) and the segment {pi,pi+1,…,pj}

 First, we have to compute the values of the least-squares errors
ei,j
 There are O(n2) pairs (i,j)
 It takes O(n) time to compute each least-squares error for each pair
 The total is O(n3), but there are tricks that can get it down to O(n2)

 The algorithm has nested For loops, for j from 1 up to n and for i
from 1 up to j, a total of O(n2)

 Let k be the number of segments
 Reconstructing the segments takes O(kn) time, unless the minimal i values

are recorded, in which case it takes O(k + n) time, which is O(n)
 Thus, the total is O(n3) unless using tricks to get the error

computation down to O(n2)

 Subset sums and knapsacks

 Read section 6.4
 Start Assignment 5

	COMP 4500
	Last time
	Questions?
	Assignment 5
	Logical warmup
	Back to Weighted Interval Scheduling
	Weighted interval scheduling
	p(j) examples
	More algorithm design
	Subproblems found!
	We've already got an algorithm!
	How long does Compute-Opt take?
	Needless recomputation
	Memoization
	Updated algorithm
	Running time of memoized algorithm
	Going beyond the value
	Reconstructing the solution
	Algorithm for solution
	Three-sentence Summary of Principles of Dynamic Programming and Segmented Least Squares
	Principles of Dynamic Programming
	Why is this dynamic programming?
	Iterative vs. recursive
	Iterative solution to weighted interval scheduling
	Informal guidelines
	Segmented Least Squares
	A line of best fit
	What does such a line look like?
	Finding such a line
	But what if the data really falls on two lines?
	Or three lines?
	We can't allow any number of lines
	Formulating the problem
	Minimizing the penalty
	Algorithm design
	More algorithm design
	Final recurrence
	Algorithm
	Reconstructing the segments
	Algorithm for segments
	Running time
	Quiz
	Upcoming
	Next time…
	Reminders

