
Week 9 - Monday



 What did we talk about last time?
 Weighted interval scheduling







 There are five pirates who wish to divide 100 gold coins
 These pirates are ranked:
 Captain
 Lieutenant
 Master
 Midshipman
 Seaman

 In order of rank, each pirate gets the opportunity to propose a plan for dividing up the gold
 If at least half of the pirates (including the proposer) agree on the proposition, it is carried 

out
 Otherwise, the pirate is killed and the next highest ranking pirate makes a proposal
 Pirates are completely rational, who value, in this order:
 Staying alive
 Maximizing gold coins received
 Seeing other pirates die

 If you were the captain, what would you propose?
 Hint: Work backwards!





 The weighted interval scheduling problem extends interval 
scheduling by attaching a weight (usually a real number) to each 
request

 Now the goal is not to maximize the number of requests served 
but the total weight

 Our greedy approach is worthless, since some high value requests 
might be tossed out

 We could try all possible subsets of requests, but there are 
exponential of those

 Dynamic programming will allow us to save parts of optimal 
answers and combine them efficiently
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 Consider an optimal solution O
 It either contains the last request n or it doesn't

 If O contains n, it does not contain any requests between p(n) and 
n

 Furthermore, if O contains n, it has an optimal solution for the 
problem for just requests 1, 2, …, p(n)
 Since those requests don't overlap with n, they have to be the best or they 

wouldn't be optimal
 If O does not contain n, then O is simply the optimal solution of 

requests 1, 2,…, n - 1



 It might not be obvious, but the last slide laid out a way 
to break a problem into smaller subproblems

 Let OPT(j) be the value of the optimal solution to the 
subproblem of requests 1, 2,…, j

 OPT(j) = max(vj + OPT(p(j)), OPT(j – 1))
 Another way to look at this is that we will include j in 

our optimal solution for requests 1, 2,…,j 
iff vj + OPT(p(j)) ≥ OPT(j – 1)



 Compute-Opt(j)
 If j = 0 then
▪ Return 0

 Else
▪ Return max(vj + Compute-Opt(p(j)), Compute-Opt(j – 1))



 Well, for every request j, we 
have to do two recursive 
calls

 Look at the tree from the 
requests a few slides back
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Uh oh.



 The issue here is that we are needlessly recomputing optimal 
values for smaller subproblems

 You might recall that we had a similar problem in COMP 2100 
with the naïve implementation of a recursive Fibonacci 
function

 In the worst case, the algorithm has an exponential running 
time

 Just how exponential depends on the structure of the 
problem



 The solution is something called memoization, which means 
storing the value for an optimal solution whenever you 
compute it

 Then, if you need it again, you just look it up (from the memo
you left yourself)

 To make this work, we need an array M of length n that stores 
the optimal value found for each request
 Initially, it's all -1 or null or another value that indicates empty



 M-Compute-Opt(j)
 If j = 0 then
▪ Return 0

 Else if M[j] is not empty then
▪ Return M[j]

 Else
▪ M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j – 1))
▪ Return M[j] 



 Constant non-recursive work is done inside of each call
 The recursion will be constant if M[j] already has a value
 There will only be n cases when M[j] doesn't  have a value
 The running time is O(n)
 Note that sorting the requests in the first place takes O(n log 

n)



 We have only found the value of an optimal solution, not the 
actual intervals included

 As with many dynamic programming solutions, the value is 
the hard part

 For each optimal value, we could keep the solution at that 
point, but it would be linear in length

 Storing that solution would require O(n2) space and make the 
algorithm O(n2) in order to keep it updated



 Recall that j is in our optimal solution if and only if vj + 
OPT(p(j)) ≥ OPT(j – 1)

 On that basis, we can backtrack through the M array and 
output request j only if the inequality holds



 Find-Solution(j, M)
 If j = 0 then
▪ Output nothing

 Else if vj + M[p(j)] ≥ M[j – 1] then
▪ Output j together with the result of Find-Solution(p(j))

 Else
▪ Output the result of Find-Solution(j – 1)

 Algorithm is O(n)
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 The key element that separates dynamic programming from 
divide-and-conquer is that you have to keep the answers to 
subproblems around

 It's not simply a one-and-done situation
 Based on which intervals overlap with which other intervals, 

it's hard to predict when you'll need an earlier M[j] value
 Thus, dynamic programming can often give us polynomial 

algorithms but with linear (and sometimes even larger) space 
requirements



 The array M is thus the key to this (and other similar) dynamic 
programming algorithms

 The same problem could have been tackled with a non-recursive 
approach where you compute each M[j] in order

 Every dynamic programming problem can use either:
 Memoized recursion
 Building up solutions iteratively

 The two solutions are equivalent, but the book will prefer iterative 
solutions, since they are usually faster in practice and easier to 
analyze



 Iterative-Compute-Opt
 M[0] = 0
 For j = 1 up to n
▪ M[j] = max(vj + M[p(j)], M[j – 1])

 Algorithm is (even more obviously) O(n)



 Weighted interval scheduling follows a set of informal guidelines 
that are essentially universal in dynamic programming solutions:
1. There are only a polynomial number of subproblems
2. The solution to the original problem can easily be computed from (or is 

one of) the solutions to the subproblems
3. There is a natural ordering of subproblems from "smallest" to "largest"
4. There is an easy-to-compute recurrence that lets us compute the 

solution to a subproblem from the solutions of smaller subproblems





 Given some data, it is easy to construct a line of best fit



 Consider a set P of n points {(x1, y1), (x2, y2), …, (xn, yn)}
 We want to define a line L as y = ax + b
 Such that its error is minimized
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 Using calculus, it's possible to derive an equation to determine 
a and b, the slope and y-intercept of such a line:
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 A single line would have terrible error
 But how do we know that there are two lines?





 If we only care about error, n – 1 lines will always be the best
 We could just put a line between each adjacent pair of points and 

have no error
 But that's obviously stupid
 Somehow, we need an algorithm that gives us the intuitively 

correct number of lines
 We need a penalty for adding more lines



 We get a set P of n points {(x1, y1), (x2, y2), …, (xn, yn)}
 For simplicity, x1 < x2 < … < xn
 Let pi be (xi, yi)
 We want to partition P into segments
 Each segment is a contiguous set of x-coordinates:
 {pi, pi+1, …, pj-1, pj} for indexes i ≤ j



 Using the formula from earlier, we compute lines minimizing 
the error for each segment

 The penalty of the whole partition is the sum of:
 The number of segments multiplied by some constant C > 0
 The error value of the optimal lines through each segment

 C is a constant provided to the algorithm
 The higher the C, the greater then penalty for having more segments



 How many ways are there to partition a list of n items?
 2n-1

 We can't consider all possible partitions
 Somehow, we need to divide the problem into smaller  

subproblems
 The last point pn is in the last segment, whatever it is
 That segment starts at some point pi
 If we knew the last segment, we could recursively solve the 

problem on points p1, p2,…,pi-1



 Let OPT(i) be the optimum solution for points p1, p2,…,pi
 Let ei,j be the minimum error of any line with respect to 

pi,pi+1,…,pj
 It must be the case that, if the last segment of the optimal 

partition is pi,pi+1,…pn, then the value of the optimal solution 
is:
 OPT(n) = ei,n + C + OPT(i – 1)



 We can generalize that observation for any subproblem going 
up to point pj:

OPT 𝑗𝑗 = min
1≤𝑖𝑖≤𝑗𝑗

𝑒𝑒𝑖𝑖,𝑗𝑗 + 𝐶𝐶 + OPT(𝑖𝑖 − 1)

 Also, the segment pi,pi+1,…,pj is used in an optimum solution 
for the subproblem if and only if the minimum is obtained 
with index i

 Note that we assume OPT(0) = 0



 Segmented-Least-Squares(n)
 Create array M with indexes 0 through n
 Set M[0] = 0
 For all pairs i ≤ j
▪ Compute the least squares error ei,j for segment pi,pi+1,...pj

 For j = 1 up to n
▪ For i = 1 up to j
▪ Set M[j] = min(M[j], ei,j + C + M[i-1])

 Return M[n]



 As before, we only find the total penalty value with the 
previous algorithm, not the actual segments themselves

 We use the observation that the segment pi,pi+1,…,pj is used in 
an optimum solution for a subproblem if and only if the 
minimum was obtained using index i

 Note that this minimal i could be recorded during the initial 
algorithm 



 Find-Segments(j)
 If j = 0 then
▪ Output nothing

 Else
▪ Find an i that minimizes ei,j + C + M[i-1]
▪ Output the result of Find-Segments(i – 1) and the segment {pi,pi+1,…,pj}



 First, we have to compute the values of the  least-squares errors 
ei,j
 There are O(n2) pairs (i,j)
 It takes O(n) time to compute each least-squares error for each pair
 The total is O(n3), but there are tricks that can get it down to O(n2)

 The algorithm has nested For loops, for j from 1 up to n and for i
from 1 up to j, a total of O(n2)

 Let k be the number  of segments
 Reconstructing the segments takes O(kn) time, unless the minimal i values 

are recorded, in which case it takes O(k + n) time, which is O(n)
 Thus, the total is O(n3) unless using tricks to get the error 

computation down to O(n2)







 Subset sums and knapsacks



 Read section 6.4
 Start Assignment 5
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